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Many-particle peculiarities in the A + B → B bimolecular
reaction kinetics. The effect of sink spatial distribution
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Abstract. The Kirkwood superposition approximation is used for the study of many-particle
effects in the A+B → B bimolecular reaction (energy transfer from donors A to unsaturable sinks
B). Several spatial distributions of sinks B are considered. It is shown that the theory presented
reproduces exact results obtained earlier for particular cases of a random distribution (using the
Wigner–Seitz model) and the sink-concentration correction obtained for particle accumulation
by means of the mean-field theory.

1. Introduction

The kinetics of bimolecular A+ B → B reaction continues to attract much attention
due to both its fundamental importance and applications in energy transfer, luminescence
quenching, void growth in irradiated solids etc ([1–4] and references therein). In this reaction
B particles (reactants) play a role of non-saturable sinks (energy acceptors or traps). The
first attempt to solve this problem was suggested long ago by Smoluchowski [5]. This
approach gives an exact result in the case of mobile non-interacting sinks B and immobile
particles A (characterized by the diffusion coefficientsDA = 0, DB > 0, the so-calledtarget
problem) whereas its correctness in the opposite situation (DB = 0, DA > 0, the trapping
problem) is not clear so far [1]. The problem is that in this case particles A reveal spatial
correlations, e.g. when several As compete to recombine some particular sink B.

The purpose of this paper is to apply theKirkwood superposition approximationto
the trapping problem, in order to study the effect of the spatial distribution of sinks B on
the reaction rate. In section 2 we present a general expression for the reaction rate for
an arbitrary spatial distribution of sinks B. In section 3 several particular cases (regular,
random and correlated sink distributions) for the donor concentration decay are considered.
The kinetics of particle accumulation is discussed in section 4. In sections 2 and 3 we test
our theory for several particular cases solved earlier [6–11] and demonstrate that Kirkwood’s
formalism successfully reproduces the relevant concentration dependences of the reaction
rate. Unlike other formalisms, our theory is very flexible and could easily be applied to
very different cases.

2. Superposition approximation

Following the approach we developed earlier [6, 7], let us consider a macroscopic crystal
of volume V containing att = 0 NB fixed sinks B andNA mobile particles A. The
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spatial distributions of reactants could be described in terms of many-particle densities
ρmm′(r1, . . . , rm, r′

1, . . . , r
′
m, t); ρmm′ dr1 . . . dr′

m gives at timet an average number of
configurations withm sinks B at coordinatesr1, . . . , rm and m′ mobile A particles at
r′

1, . . . , r
′
m, respectively. The following hierarchy of kinetic equations for these densities

could be easily derived:

∂ρA(r′
1, t)

∂t
= DA 1ρA(r′

1, t) −
∫

σ(r1, r
′
1)ρAB(r1, r

′
1, t) dr1

∂ρAB(r1, r
′
1, t)

∂t
= DA 1ρAB(r1, r

′
1, t) − σ(r1, r

′
1)ρAB(r1, r

′
1, t)

−
∫

σ(r2, r
′
1)ρBBA(r1, r2, r

′
1, t) dr2. (1)

Here1 is the Laplace operator andσ(r1, r
′
1) is the reaction (trapping) rate for a particle A

at r′
1 with a sink B atr1. The equation set (1) is infinite; the next equation for the three-

particle densitiesρBBA contains four-particle densities, etc. Due to a crystal homogeneity
one-particle densities are nothing but coordinate-independent macroscopic concentration

ρB(r1) = ρB(r2) = nB(t) ρA(r′
1, t) = nA(t) (2)

whereas the joint densities depend only on the relative coordinates,r = |r1 − r′
1| and

r∗ = |r1 − r2|:
ρBA(r′

1, r1, t) = nAnBY (r, t)

ρBB(r1, r2, t) = n2
BXB(r∗, t).

(3)

In equation (3) we introduced for simplicity thecorrelation functionsXB, Y for pairs of
sinks (traps B–B) and for donor–trap pairs (A–B). The advantage of their use is that these
correlation functions do not depend on the macroscopic concentrationsnA andnB . For the
random (Poisson) particle distribution the correlation functions are equal to unity, thus their
deviation from unity characterizes non-uniform relative spatial distribution of reactants.

In order to handle practically the infinite set of equations, the so-called superposition
approximation [8] is widely used, as suggested first by Kirkwood:

ρBBA(r1, r2, r
′
1, t) ≈ XB(r∗, t)Y (r, t)Y (r ′, t)n2

B(t)nA(t). (4)

This approximation presents three-particle correlation B1B2A through three relative pair
correlations: B1B2, B1A, B2A.

For the case of a contact reaction at the sphere of radiusr0 described byσ(r) =
βδ(r − r0)/4πr2

0 (β is the rate parameter) and using equations (1)–(4), one can easily
describe the kinetics under study in terms of the macroscopic concentrations and the joint
correlation functions:

dnA(t)

dt
= −k(t)nA(t)nB(t) (5)

where thereaction rateis described by a flux of particles A over the reaction sphere:

k(t) = 4πDAr2
0

[
∂Y (r, t)

∂r

]
r=r0

= βY(r0, t). (6)

The joint correlation ‘sink-particle’ function obeys the following kinetic equation:

∂Y (r, t)

∂t
= DA 1Y(r, t) + k(t)nBY (r, t)[1 − Z(r, r0)] (7)
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where in the 3D case the functional reads [6, 7]

Z(r, r0) = 1

2rr0

r+r0∫
r−r0

XB(r ′, t)r ′ dr ′. (8)

Since sinks B are immobile, their spatial distribution function does not depend on time,
XB(r, t) ≡ XB(r). In the quasi-steady-state regime reached after some transient period, the
relevant reaction ratekqs and the correlation functionYqs become time independent. One
can see that many-particle effects are incorporated into the kinetic equation (7) through the
second, non-linear term on the right-hand side containing the reaction rate and the functional
of the correlation function of traps. If traps were not spatially correlated (homogeneous
distribution of sinks),XB(r, t) ≡ 1, the term in square brackets on the right-hand side
of equation (7) turns out to be zero and these corrections disappear. This immediately
results in the quasi-steady-state reaction rate derived for diluted systems by Smoluchowski,
k0 = 4πDAr0 (see also [7, 12]).

In other words, many-particle correlations are important for the non-uniform trap
distributions and large reactant (trap) concentrations entering as co-factor in right-hand
side of equation (7). One of the sources for such correlation is a finite size of sinks B: two
sinks could not be closer to each other than at the distance of 2r0 wherer0 is a sink radius
(the so-calledeffect of excluded volume). If at some distancea around a given sink B there
are no other sinks,XB(r < a) = 0, it is equivalent to the positive source for the correlation
function of dissimilar particles in the intervalr0 < r < a described by the second term on
the right-hand side in equation (7). This results in an increase of the reaction rate,kqs > k0.
At r > a the sink correlation vanishes and the correlation function of dissimilar particles
obeys the Smoluchowski steady-state equation,DA 1Y(r, t) = 0. This equation contains no
reaction terms; the reaction rate is defined through the gradient of the correlation function
of dissimilar particles, equation (6). In contrast, if sinks are clustered at short relative
distances,XB(r < a) > 1, this means additionalnegativereaction term in equation (6)
which results in areducedreaction rate,kqs < k0.

After these qualitative arguments we consider in detail several kinds of important trap
distribution: a random distribution of sinks B, a regular distribution, a pair distribution and
a cluster distribution.

3. Particular trap distributions

(i) Consider first the effect of excluded volume described by the steplike (Heaviside)
correlation function

XB(r) = 2(r − 2r0). (9)

Using equations (7) and (8), and introducing a new functionw(x) = Yqs(x)xr0 where
x = r/r0, we obtain the following kinetic equations:

d2w

dx2
+ 4πr3

0

R
3

(
1

2
− x

4
+ 3

4x

)
w = 0 1 6 x 6 3 (10)

d2w

dx2
= 0 x > 3 (11)

whereR = n
−1/3
B is the mean distance between traps.
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For a small volume fraction occupied by sinks,8 = 4
3πr3

0nB � 1, equations (10)
and (11) could be solved iteratively. The first approximation forw yields the reaction rate
correction linear in sink concentration,

kqs ≈ 4πDr0[1 + 1.538]. (12)

(We neglected here higher-order terms in8.)
(ii) Let us consider now a more general sink distribution described by the function

XB(r, 0) = 2(r −a) wherea is a parameter whose magnitude can vary from 2r0 (the effect
of excluded volume) to the mean distance between traps,R.

From the above one obtains the following kinetic equations:

DA 1Yqs(r) + kqsnBYqs(r) = 0 r0 6 r 6 a

DA 1Yqs(r) = 0 r > a. (13)

When deriving these equations, we took into account thatYqs(r) is close to zero asr is close
to r0 and the functionalZ(r, r0), equation (8), is close to a step function of the parameter
a. Solution of equations (13) could be presented in the form

kqs = k0

cos{√k0nB/DA(a − r0)}
. (14)

Taking into account thatr0 � R, one obtains from equation (14) the steady-state reaction
rate

kqs = k0

(
1 + C81/3

(
a − r0

R

)2)
(15)

whereC = 2π/( 4
3π)1/3 = 3.9. The second term on the right-hand side of equation (15)

demonstrates the many-particle corrections due to competition between several sinks B for
the reaction with some approaching donor A.

For a regular array of sinks B characterized bya ≈ R and r0 ≈ 0 one obtains the
reaction rate

kqs = k0[1 + 3.981/3]. (16)

Note that for8 = 4
3πr3

0nB � 1 these sink-concentration corrections are much larger than
those for the excluded volume, equation (12). This result could be also derived using not a
continuum but a discrete distribution of sinks in the form

XB(r) = vB

n∑
i=1

ziδ(r − Ri)

4πR2
i

(17)

where the volume per sink isvB = 1/ R
3
, zi is a number of sinks at radiusRi from a sink

at the coordinate origin, and sinks are arranged in the form of a regular cubic structure with
the lattice constantR. The reaction rate obeys the following equation:

kn
qs = k0

[
1 + 2πr0

R

(
C2

n+1 −
n∑

i=1

zi

ci

)]
(18)

where the coefficientsCi = Ri/R. In the limit of an infinite number of sinks,n → ∞, one
obtains equation (16).

Ham [9] presented an exact solution for such a regular sink distribution in terms of the
Wigner–Seitz (cell) model

kqs = k0[1 + 1.8581/3]. (19)
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Despite different numerical co-factors of81/3 in equations (16) and (19), Kirkwood’s
superposition approximation gives the same functional dependence of the reaction rate on
the sink concentration,n1/3

B . Moreover, our equation (16) would coincide with the exact
solution, equation (19), if one estimates the mean distance between traps asa = 0.69R.
This estimate is more correct than justa = R sinceeach trap is surrounded by the reaction
sphere.

To demonstrate the abilities of Kirkwood’s formalism, let us consider now several other
sink distributionsXB(r).

(iii) It has been shown in [13] that reaction ratekqs for a pair of sinksB separated by
a distancel has the following dependence onl (as l � r0)

kqs = 4πDr0

1 + r0/l
. (20)

In [13] the steady-state equation for a pair of sinks was exactly solved in bi-spherical
coordinates. However, this method cannot be generalized for more complicated cases
whereas our approach does not have such restrictions. For a pair of sinks we choose
XB(r) in the form

XB(r) = δ(r − l)

4πr2
v (21)

wherev = n−1
B . For R � l determination ofkqs through the equations (7) and (8) results

in the solution of a set of the following equations:

d2w

dx2
= 0 1 < x 6 xl − 1 (22)

d2w

dx2
− 1

2xl
w = 0 xl − 1 6 x 6 xl + 1 (23)

d2w

dx2
= 0 xl + 1 6 x. (24)

Here we have changed variables in the steady-state equations (7) and (8) forx = r/r0, xl =
l/r0 and introducedw = Yqs(r)xr0. Taking into account thatw(x = 1) = 0 and
w(x → ∞) → x, and internal boundary conditions, we obtain from the definition of
the one-dimensional reaction rate,kqs = 4π D dw/ dx |x=1 [14]

kqs = 4πDr0

[
1 − 1

xl

+ 1

2xl

ln

(
xl + 1

xl − 1

)]
. (25)

As clearly seen from a comparison of (20) and (25), both equations lead to the same result
for large l � r0. Their maximum difference takes place atl = 2r0. It can be shown that in
the case of contact of two sinkskqs = 4πDr0 ×0.816. Its deviation from the exact value of
kqs = 4πDr0 · ln 2 could be explained by the fact that in the superposition approximation the
averaging over angles was performed before solving equations (7) and (8), thus assuming
the spherical symmetry of the functionXB(r).

Note that having chosen sink distribution function in the form (21), we actually have
considered isolated sink pairs neglecting the weaker (kqs ∝ 81/3) effect of competition
between different pairs appearing at larger reaction times.

It is not difficult to obtain that for severalequidistant groupsof B particles, each
containingz particles,

kqs = 4πDr0

[
1 − (z − 1)r0

l

(
1 − r0

l

)]
.
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Lastly, for aclusteredsink distribution chosen in the form

XB(r) = b 0 < r 6 r1

XB(r) = 1 r1 < r (26)

one easily obtains (atbr2
1r0nB � 1) that the reaction rate

kqs = 4πDr0[1 − 2πr0nBb(r1 − r0)
2]. (27)

As one can see, in this casekqs is decreasedcompared to the Smoluchowski reaction rate
k0 as a result of the screening effect of close B sinks. The proof that sink clustering acts to
reduce the reaction rate also follows from the variational principle [4].

4. Accumulation kinetics

For the homogeneous creation of donors A with the ratep per unit volume and time the
steady-state (t → ∞) kinetic equations (5) and (7) transform into

p = kqsnBnA(∞)

DA 1Yqs(r) + p

nA(∞)
(1 − Yqs(r)) + kqsnBYqs(r)[1 − Z(r, r0)] = 0 (28)

wherenA(∞) = nA(t → ∞) is thesaturation concentrationof mobile particles A.
In the same way as we calculated above the reaction rate for the concentration decay,

one obtains for the rate of the accumulation kinetics

kqs = k0

[
1 − 38

2
+ (38)1/2 + 1.58d2 + 0.58(38)1/2(d3 − 1)

1 + (38)1/2(d − 1)

]
(29)

whered = a/r0 describes as earlier the sink correlation effect atr < a. Retaining here
only the term leading at8 � 1, one obtains for homogeneous sink distribution,d → 1,
that kqs obeys the law derived earlier in terms of themean-field theory[1, 2]:

kqs ≈ k0[1 + (38)1/2]. (30)

On the other hand, it could be shown that the reaction rate for the regular trap array
with particle accumulation(a = R/r0), equation (29), transforms into equation (15), i.e. the
correction factor describing the sink competition effect is proportional to81/3 rather81/2.

A similar result was obtained in [11] for a discrete-lattice model of sink distribution:

kqs = k0

1 − m81/3
≈ k0(1 + m81/3) (31)

with 8 � 1 andm=1.76, 1.79 for sc and fcc lattices, respectively (see also [10, 15]).

5. Conclusion

We have demonstrated that use of the Kirkwood superposition approximation allows us to
study the many-particle (sink concentration) effects in the bimolecular A+B → B reaction.
Study of different trap distributions permitted us to reproduce easily several particular results
for the reaction rate derived earlier by means of different methods, including the Wigner–
Seitz model and the mean-field theory. It is shown that the Kirkwood formalism, which
is a kind of mean-field theory, is very flexible and able to treat easily arbitrary spatial
distribution of sinks, including their pairs and clusters.
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